How do falcons overtake prey?

Falcons can overtake most birds during flight and usually maintain an average gliding and flapping speed of 30 mph. Falcons, however, may reach speeds of 100-200 mph during swift, power dives.

Power dives are made when a falcon spots prey from above, turns downward, and exerts a few rapid wing beats. Finally, the bird folds its wings and plunges downward at the prey. Folding the wings during prey capture reduces both surface area and air resistance, making the bird more aerodynamic.

Upon striking, falcons either kill the prey with a lethal blow from clenched feet or snatch with their talons. Falcons prey upon starlings, sparrows, blackbirds, meadowlarks, jays, doves, quail, and burrowing owls while in mid-flight. Falcons also hover above the ground preying upon small mammals such as rabbits and prairie dogs.
Why are rheas, emus, and ostriches flightless?

The Australian emu, South American rhea, and African ostrich are all flightless birds called ratites. Ratites have raft-shaped breastbones, unlike carinates (flying birds, which have keel-shaped breastbones). For carinates, the keel shape provides a site for flight muscles to attach to the breastbone. Instead of flight, ratites rely upon large body size and speed as survival strategies.

Ostriches are the largest living birds, followed closely by emus and rheas. Ratites are also incredibly fast and reach speeds comparable to those of hoofed animals. Ostriches may run up to 45 miles per hour while rheas and emus run up to 40 miles per hour. This speed deters most natural predators other than humans. Nevertheless, rheas display aggression when threatened.
How do camelids carry loads at elevation?

South American camelids (including llamas, alpacas, and guanacos), are well-adapted to carry heavy loads at high altitudes. These animals may carry over 200 pounds and walk 16 miles a day at high elevations. Many nomadic people rely upon these animals to carry heavy loads up mountainous terrain.

South American camelids are adapted for traveling at high elevations despite low ambient oxygen. They are able to do so because of their high concentration of red blood cells, or erythrocytes. Red blood cells contain oxygen-carrying hemoglobin and transport oxygen and carbon dioxide within blood. Camelid blood has oval blood cells to maximize oxygen exchange, while all other mammals have circular ones.

Like all camelids, llamas, alpacas and guanacos are ungulates, hoofed mammals. Each of their hooves has two specialized toe pads to aid in weight distribution. These cutaneous pads provide flexibility when traveling on rocky trails and act as cushions. Most ungulate species lack such pads, but llama and alpaca hooves are specially adapted for climbing.