Why are female birds of prey larger than males?

Males of most species are larger than females. Female birds of prey, however, are generally larger than males. When females in a species are larger than males, the species displays reverse sexual dimorphism. The snowy owl engages in this reproductive strategy.

Female snowy owls are 20% larger and 30% heavier than males. Females invest metabolic energy in large size and feather mass to protect and warm their young in the nest.

Males, however, allocate most of their resources to finding a mate and hunting, investing little in body size.

Female plumage is thicker than that of males and has dark flecks which camouflage and provide warmth for her young. The male, on the other hand, has bold, entirely white plumage which helps him to attract potential female mates.
How do leopard geckos produce water?

Leopard Geckos have adapted to the arid habitats of India and Pakistan. These geckos evolved a survival mechanism by storing fat in their tails when food resources are abundant.

Geckos then rely upon this fat reserve during times of drought and prey scarcity. They convert this fat into water and sugar which supply necessary energy and fluids to maintain normal metabolic processes.

In essence, the leopard gecko keeps a canteen of fat in its tail on reserve. This clever adaptation allows the gecko to remain fully hydrated despite harsh, extreme conditions.
BEHAVIOR & ADAPTATION

Survival

Reptiles

Reptiles are an extremely varied and successful group of animals. There are over 6,500 known species, represented by turtles and tortoises, lizards, worm lizards, snakes, and crocodiles. Reptiles have one huge advantage over birds and mammals: Since they are less dependent on maintaining a constant temperature, they require much less food to survive. They are thus able to live in harsh environments like deserts, where food supplies are scarce or sporadic.

Cold-Blooded?

Unlike birds and mammals, reptiles are primarily dependent on external sources of heat, such as the sun, to maintain body temperature. By shuttling between higher and lower temperatures, reptiles regulate their body temperature. Reptiles have long been described as cold-blooded, but their blood is actually the same temperature as their environments, which can be extremely warm.

Reproduction

Many reptiles lay shelled eggs on land. Like birds, hatching is facilitated by a sharp, forward-pointing egg tooth which is later shed. Embryonic development is accelerated by warmth. Interestingly, the sex of certain turtle, tortoise, and crocodile hatchlings depends on temperature during a critical period of incubation. For example, in the American alligator (Alligator mississippiensis), temperatures of less than 86˚ F between the 7th and 21st days of incubation produce all females whereas those of more than 93˚ F produce all males.

Most reptiles abandon their eggs after laying, but in certain lizards and snakes, including some skinks and cobras, females remain with eggs to drive away predators. The female Burmese python (Python molurus) coils around her eggs for more than two months and elevates egg temperature with frequent small contractions. A substantial number of lizards and snakes are viviparous, which means that they do not lay eggs but give birth to live young.
How do waterfowl keep warm?

Many birds conserve body heat by exposing only one foot at a time to the elements. Arteries in the webbed feet of waterfowl also act as heating coils and minimize heat loss to the environment. Aquatic birds waterproof their feathers by rubbing oil on themselves from a gland in the tail. This is known as preening behavior.

Why do some waterfowl have flattened bills?

Many waterfowl have flattened bills with a hard tip, soft sides with touch receptors, and internal ridges that act as strainers. This bill structure allows waterfowl to dabble in pond surface water and strain out invertebrates and algae. The mallard, for example, dips its head forward underwater while tipping its hind end upward, out of the water.